B-CAROTENE DETERMINATION OF PROCESSED FRUITS AND VEGETABLES USING REVERSED-PHASE ULTRA HIGH PRESSURE LIQUID CHROMATOGRAPHY

Joan M. Castro, Marvelous Grace L. Villazorda, Ritchel M. Merencillo, and Rosemarie J. Dumag

BACKGROUND

β-carotene is used by consumers as coloring agent, anti-oxidant and provitamin source. It is the most important provitamin A carotenoid found in dark-green leafy vegetables, carrots, and various fruits. Use of small-scale method provides a safe, cost-effective, efficient and environment-friendly analysis.

OBJECTIVES

The study aimed to analyze processed fruits and vegetables using validated small-scale β-carotene method by Ultra High Pressure Liquid Chromatography (UHPLC) and participate in Proficiency Testing for the assessment of the performance of the method, analyst and the laboratory.

MATERIALS AND METHODS

Method performance characteristics were measured and evaluated using Standard Reference Material 2385 Slurried Spinach and *malunggay* tea sample. The laboratory participated in the Proficiency Testing to assess its competence to conduct the analysis. β-carotene content of samples were also determined.

RESULTS

About 85% of the analysis time and amount of solvents used were saved using the small-scale method. There was a linear relationship (r=0.9996) between the concentration of β-carotene and its response using the UHPLC. The instrument can detect and quantify β-carotene above 0.0962 µg/mL and 0.3206 µg/mL, respectively. The method is accurate (15% mean bias) and precise (HorRat=0.69; HorRat=0.92). A total of 113 different processed fruit and vegetable products were purchased in the local supermarkets from North and South of Manila. Unsoaked *malunggay* tea (14,866 µg/100g) had the highest β-carotene content followed by carrot-flavored baby food (8,487 µg/100g), canned peas and carrots (2,550 µg/100g), carrot-flavored juice (1,266 µg/100g), and dried mangoes (1,262 µg/100g). The laboratory got satisfactory PT participation for Soup (z-score = -1.33) and Dietary Supplement (z-score = -1.21).

CONCLUSIONS AND RECOMMENDATIONS

Results of validation showed that small-scale method of β-carotene analysis is fit for its intended purpose. Fruits and vegetables are good sources of β-carotene. It is recommended to explore the possibilities of quantifying the carotenoid profile of fruit and vegetable products because of their nutritional benefits.